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Abstract:  
It is suspected that increasing wildland fire activity is deteriorating air quality across the 

Western U.S. Wildland fires emit many pollutants such as fine particulates and chemical 
precursors for ozone (O3) formation. The chemical formation of O3 during smoke events is 
poorly understood as many factors control O3 production such as the type and amount of fuel 
being burned, availability of nitrogen oxides and volatile organic compounds, as well as smoke 
shading effects. Air quality observations of O3, particulate matter with a diameter of less than 2.5 
microns (PM2.5), and carbon monoxide (CO) were combined with model analyses generated by a 
coupled fire-atmosphere model (WRF-SFIRE-Chem) to explore how urban emissions interact 
with smoke to form O3. Coupled fire-atmosphere models such as WRF-SFIRE-Chem can 
explicitly resolve many of the underlying physical and chemical processes that govern smoke 
transport. WRF-SFIRE-Chem simulations were able to reproduce regional smoke transport 
across the Western U.S for a smoke episode in August 2020. O3 concentrations were elevated in 
areas under the influence of the smoke plume such as Boise, Idaho, and northern Utah. 
Simulations were also generated with and without aerosol radiative feedback to investigate the 
impacts of smoke shading on O3 production. Simulations that included smoke shading resulted in 
O3 concentrations that were lower relative to simulations that had aerosol radiative feedbacks 
turned off. Interestingly, turning on and off aerosol feedbacks not only changed the distribution 
of O3 but also affected the transport of PM2.5 and CO. These results suggest that smoke shading 
effects can alter regional meteorology and wind patterns within and around the smoke plume, 
which can ultimately impact smoke transport and smoke plume chemistry. An observational-
based framework using low-cost sensors was also developed to investigate the August 2020 
event. Preliminary results found that low-cost sensors, combined with two calibration models can 
accurately predict O3 during wildfire smoke events. O3 concentrations appeared to be highest 
near downtown Salt Lake City, and gradually decreased as the distance from the city increased. 
 
Background and Significance:  

Wildfires can enhance summertime ozone (O3) and aerosol concentrations, which can 
degrade air quality and have adverse effects on human health. While air quality has improved 
across much of the U.S., the Western U.S. has seen more extreme air quality events, which can 
be partially attributed to an increase in wildfire activity (Westerling et al. 2006; McClure and 
Jaffe 2018). Fire activity and smoke emissions are expected to increase through the end of the 
21st century (Spracklen et al. 2009), which will continue to deteriorate summer air quality (AQ) 
across the State of Utah. A dichotomy in AQ observations has been identified where 
summertime PM2.5 in the Western U.S. was increasing in contrast to the eastern U.S, which has 
observed decreases in PM2.5 (McClure and Jaffe 2018). Across Utah, air quality sites have 
observed an annual increase of 1.5 μg m-3 for exceptional air quality events during the late 
summer (August-September), which coincides with the middle of the fire season (Wilmot et al. 
2021). It is suspected that recent increases in fire activity are driving elevated PM2.5 
concentrations. While continued reductions of nitric oxides (NOx) emissions have helped reduce 
O3 across much of the U.S. (Jaffe et al. 2007), some areas across the Western U.S. are seeing an 
uptick in summertime O3 by 2-8 ppb (Liu et al. 2017).  
 Disentangling the impacts of smoke on the urban landscape is challenging, as there are 
many processes that need to be accounted for. For smoke transport, these processes include: (1) 
the emission of smoke from combustion along the fire line, (2) fire-affected local meteorology, 
(3) the buoyant fire plume rise, (4) entrainment along the plume rises, (5) particle scavenging by 



wet and dry deposition, (6) aerosol direct and indirect effects, and (7) the advection of smoke by 
larger-scale wind patterns (Figure 1). Many of the processes listed above interact and are 
dependent on each other. For example, the wildfire plume rise and the vertical dispersion of 
smoke are affected by the strength of the fire-emitted heat fluxes. Smoke can also directly 
interact with local and regional meteorology by shading areas underneath the wildfire smoke 
plume, which results in cooling and changes in wind patterns in and around the smoke plume 
(Kochanski et al. 2019).  
 There are many chemical compounds emitted from wildfires that can aid in the formation 
of O3 (Yokelson et al. 2011). Wildfires smoke plumes are usually composed of elevated 

concentrations of O3 
precursors such as NOx 
and especially volatile 
organic compounds 
(VOCs). As a result, 
smoke plumes can have 
O3 enhancements that 
range from 0 to 90 ppb 
(Verma et al. 2009). O3 
production within wildfire 
smoke plumes can be 
sensitive to a variety of 
variables such as time of 
day, meteorology, 
altitude, the chemical 
composition of the plume, 
combustion efficiency, 
transport (residence time), 
and proximity to other 
emission sources. Smoke 

plume chemistry can also be impacted by smoke shading effects, which can reduce the amount of 
sunlight available for O3 photochemistry. Previous work has suggested that surface PM2.5 
concentrations that exceed 50 μg m-3 are indicative of a smoke plume that is thick enough to 
reduce O3 production (Buysse et al. 2019). Smoke plumes that intersect urban centers can also 
see further O3 enhancements when the smoke plume interacts with NOx-rich environments 
(Ninneman and Jaffe 2021).  
 The complexity of the underlying physical and chemical processes surrounding smoke 
transport and smoke impacts on urban quality motivates the research utilizing high-resolution 
atmospheric transport models and high-density air quality measurements. For this project, we 
utilized a state-of-the-art coupled-fire atmosphere model (WRF-SFIRE; Mandel et al. 2011) to 
determine how wildfire smoke enhances O3 concentrations across urban centers. WRF-SFIRE 
can account for and dynamically link many fire and smoke-related processes identified in Figure 
1.  For example, fire growth within WRF-SFIRE is parameterized using a semi-empirical 
formula that relates local meteorology, fuel types, characteristics, and terrain to fire growth rates. 
The simulated fire growth within WRF-SFIRE is then used to compute smoke emissions and 
heat fluxes, which are injected into the atmosphere. Heat fluxes computed by WRF-SFIRE are 
added to the atmosphere, which allows the model to generate a buoyant smoke plume. The 

Figure 1. A schematic illustrating processes important in the context of smoke transport, 
dispersion, and chemistry. 



explicit representation of the wildfire plume rise within WRF-SFIRE allows the model to loft 
smoke into the atmosphere (Figure 2) in response to the fire heat fluxes. Typically, WRF-SFIRE 
is run at a grid spacing equal to or less than 1.5-km, which allows the model to explicitly resolve 
the wildfire plume rise for larger fires (Kochanski et al. 2019; 2021).  

WRF-SFIRE has been coupled with WRF-CHEM (Grell et al. 2005) so that smoke 
produced from the wildfire can chemically interact with other chemical species found in the 
atmosphere (WRF-SFIRE-CHEM; Kochanski et al. 2016). For the remainder of this report, 
WRF-SFIRE-Chem will be abbreviated as WRFSFC. WRFSFC can also account for aerosol 
interactions such as radiative feedbacks, where aerosols can absorb/scatter/and reflect incoming 
solar radiation, as well as wet and dry deposition, which removes scavenges particulate matter 
from the atmosphere (Kochanski et al. 2019). Since WRFSFC can account for many of the 
processes outlined in Figure 1 and couples them under a unified framework, WRFSFC is an ideal 
tool for studying smoke impacts on air quality.   

Given the spatial heterogeneity of wildfire smoke plumes, low-cost sensors are also being 
recognized as being powerful tools allowing for investigations of how the transport of smoke and 
how smoke interacts with urban emissions (Mallia et al. 2021). Low-cost sensor measurements 
have been previously used to estimate PM2.5 concentrations within wildfire smoke plumes at 
high spatial resolution across urban landscapes. Recent advances in the AirU oxidizing gas 
sensor, combined with calibration models, now allow low-cost sensors to estimate O3 
concentrations. These measurements provide insights into the spatial heterogeneity of O3 
measurements within wildfire smoke plumes that intersect urban centers like Salt Lake City 
(SLC).  
 
Objective:  

For this project, we deployed a coupled fire-atmosphere model with chemistry 
(WRFSFC) to simulate the downwind transport and chemical evolution of wildfire smoke. We 

Figure 2. WRF-SFIRE forecast for the Caldor Fire in California during the 2021 wildfire season. The red area shows the 
modeled burned area while the transparent gray isosurfaces represents smoke (PM2.5). 



also used WRFSFC to investigate how wildfire smoke interacts with urban emissions. This high-
resolution modeling framework simulated local and regional chemical transport processes, and 
complex fire-atmosphere interactions. This project also sought to use the oxidizing gas sensor 
located within low-cost sensors to assess spatial variability in O3. Since low-cost sensors are 
cheaper relative to traditional O3 monitoring instruments, many more of these sensors can be 
deployed across an urban center. Thus, low-cost sensors could be used to study localized O3 
gradients across the urban landscape. Through an analysis of observational and model data, this 
project specifically addressed the following scientific questions:  
 
 
 
 
 
 
 
 
 
We specifically addressed the 6th item in the Utah Division of Air Quality’s (UDAQ) Goal and 
Priorities section, which encourages research on “source contributions to summertime ozone”. 
Through this project, we identified the role that wildfire plays in enhancing summertime O3 
levels relative to other sources of pollutants, while also elucidating the complex chemical 
interactions between wildfire smoke and aerosol radiative feedbacks. In addition, this project 
also targeted the 1st and 3rd items in UDAQ’s Goal and Priorities section, which seeks projects 
that can improve air quality models and elucidate air exchange processes that involve pollutants. 
To the best of our knowledge, this project represents the first attempt to use a coupled fire-
atmosphere model for air quality and photochemical modeling applications that includes all 
sources of atmospheric pollutants, e.g., wildfires, anthropogenic sources, and biogenic 
emissions. 
 
Methods:  

The methodology section is 
broken up into two separate sections. 
The first section reviews the 
methodology behind how O3 
measurements were collected by the 
AirU low-cost sensors. The second 
section reviews the WRFSFC model 
configuration and setup. For this 
project, we selected a regional smoke 
event that impacted northern Utah 
from August 21st to 22th 2020. During 
this time, PM2.5 ranged from 10-60 
µg m-3, while O3 approached 100 ppb 
across northern parts of Utah. The 
source of the elevated PM2.5 
concentrations and the chemical 

Scientific Questions: 
1. What are the impacts of wildfires on ozone concentrations along the Wasatch Front 

relative to the contributions from anthropogenic sources? 
 

2. How does smoke shading from smoke plumes impact photochemistry?  
 

3. What is the spatial variability and sensitivity of smoke-enhanced ozone to different 
urban sources of ozone precursors?  

 

 

 

Figure 3. MODIS visible satellite image depicting a regional smoke event 
on August 21, 2020. 



precursors that would have aided in the formation of O3 likely originated from fire activity 
located in central and northern California (Figure 3).  
 
AirU Ozone Sensor 

The AirU sensor network had 68 sensors operational in the Salt Lake Valley (SLV) 
during a smoke event spanning from August 20-22, 2020.  O3 concentrations were estimated 
using two calibration models for 68 AirU sensors across the SLV. The metal oxide sensor on the 
AirU sensor is an SGX Sensortech MiCS-4514 compact MOS sensor that is equipped with two 
independent sensing elements, one for reducing species measurements (RED sensor) and one for 
oxidizing species measurements (OX sensor).  Since O3 is an oxidizing agent, it can be detected 
via the AirU OX sensor. In August 2020, 82 AirU sensors were operating across Salt Lake 
Valley.  After the initial processing of AirU sensor measurements, 14 AirU sensors were dropped 
from the analysis. Three of the 14 sensors were dropped due to oxidizing measurements that 
ranged less than 100 mV compared to an average range of 600 mV. Values within this range 
indicate the possibility of a dirty sensor or a faulty resistive heater.  11 other sensors were 
discarded from this analysis as they reported many null measurements throughout the collection 
period. Null measurements indicate that the sensors either had a faulty metal oxide sensor, 
experienced a loss of power, or had some other type of problem.  Measurements from the 
remaining 68 AirU sensors were resampled to hourly averages. Measurements collected by the 
AirU sensors were then aligned with hourly averaged DAQ O3 and solar radiation measurements 
(Sayahi et al. 2020).   

A z-score normalization process was also used to address the inherent intra-sensor 
variability seen in metal oxide low-cost sensors (Okorn and Hannigan 2021).  Applying the z-
score normalization to each input variable resulted in each variable having the same order of 
magnitude. Furthermore, machine learning algorithms are more effective at solving models when 
input variables are of similar magnitude (Guido and Muller 2016).  The AirU temperature, AirU 
oxidizing species, and DAQ solar radiation variables were individually z-scored by subtracting 
the mean of the data collection period and then dividing this by the standard deviation for the 

Figure 4. WRFSFC domain configuration for the August 21-25 smoke event simulation. Domain 1 (d01) had a grid spacing of 12-
km, while domain 2 and 3 (d02 & d03) used a grid spacing of 4-km. Domain 4, which was centered over the fires producing 
smoke in central/northern California, had a grid spacing of 1.333-km to allow WRFSFC to explicitly resolve the wildfire plume 
rise. Colored circles represent AirNow air quality sites used to evaluate our WRFSFC model simulations.  



same collection period.  The z-scored variable distribution will have a mean of zero and a 
standard deviation of one.  The z-scored values were used to develop and train a calibration 
model. z-Score normalization was not applied to the DAQ-measured O3 concentrations since 
these O3 measurements were used to evaluate our calibration models. 
 
WRFSFC model setup: 

As described in the Motivation and Objection Sections, this project deployed WRFSFC 
to quantify the impacts of smoke on air quality across Utah. WRFSFC is a coupled fire-
atmosphere model that links fire emissions to WRF-Chem’s chemical mechanisms. This allows 
WRFSFC to simulate complex atmospheric chemistry such as O3 formation, along with aerosol 
physics and aerosol interactions with solar radiation. For this project, we ran WRFSFC for the 
August 20-22 2020 smoke event, which impacted a large portion of the Western U.S. To allow 
sufficient time for our chemical initial conditions to spin up, the WRFSFC simulation period was 
extended to cover August 14-26. Our WRFSFC model was configured such that most of the 
Western U.S. was covered by a coarse 12-km model grid, which will be referred to as domain 1 
(Figure 4). In addition, two telescopic domains were embedded within our WRFSFC simulation, 
where domains 3 and 4 had 4- and 1.333-km grid spacing, respectively, and were centered over 
the source of the wildfire smoke shown in Figure 3. It’s worth noting that the domain centered 
over the fires needed to have a high enough resolution properly simulate the vertical transport of 
smoke by the wildfire plume rise. Work by Kochanski et al. (2019) suggested that a 1.333-km 
can accurately simulate wildfire plume rises for larger wildfires. Another higher resolution 
domain with 4-km grid spacing was centered over northern Utah (Figure 4). All WRFSFC 
domains were configured with two-way nesting, meaning that smoke can be exchanged between 
each of the model domains. For our WRFSFC simulations, we utilized the MOZART chemical 
mechanism (Emmons et al. 2010) coupled with the GOCART aerosol model.  

To run WRFSFC, many inputs are needed to generate simulations of wildfire smoke. 
Inputs for our WRFSFC simulations included the following:  

a) High-resolution fuel, vegetation, and topography data for fires we are simulating 
b) Fire detecting data for initializing and prescribing fire growth 
c) Meteorological boundary/initial conditions  
d) Chemical boundary/initial conditions  
e) Anthropogenic and biogenic emissions 

High-resolution fuel, vegetation, and topographic data from LANDFIRE (https://landfire.gov) 
with 30-m grid spacing were used to initialize fire mesh within the innermost WRFSFC domain 
(domain 4, see Figure 4). This is the domain responsible for running the WRFSFC’s fire spread 
model, which is then used to compute the fuel consumption. The amount of fuel that is consumed 
by the fire is dependent on the fuel classification as determined by the LANDFIRE fuel data. The 
fuel classification is also used to determine the emission factors of smoke across many different 
chemical species.  

Traditionally, WRFSFC forecasts fire growth using the Rothermel fire spread model. For 
this project, we prescribed fire growth using a new satellite-informed data assimilation product 
that utilizes a support-vector machine learning algorithm (SVM). Using SVM, infrared fire 
detections from the Visible Infrared Imaging Radiometer Suite are used to construct a two-
dimensional matrix that can estimate the fire arrival time for any given grid cell (Farguell et al. 
2021). This algorithm constraints fire growth within WRFSFC and eliminates some of the fire 
growth errors typically observed when driving a fire model with local meteorology. On average, 



SVM has a good agreement when evaluated with an independent fire perimeter data set (Farguell 
et al. 2021) and provides continuous fire progression data that can be used to constrain the fire 

model. The SVM technique has a 
relatively high probability of 
detection (0.86), and a low false 
alarm ratio (0.21). In addition to 
estimating fire growth for any 
given fire, SVM should also better 
estimate the fire emissions 
generated by WRFSFC since this 
technique constrains the fire area 
and thus, the amount of fuel that is 
burned by the model. This UDAQ 
project represents one of the first 
attempts to use SVM for fire-
related air quality modeling 

applications. Meteorological initial and boundary conditions for our WRFSFC simulations were 
obtained from the Climate Forecast System Reanalysis (CFSR; Saha et al. 2014). Output from 
CAM-chem in CESMv2.0 provided our WRFSFC simulations with large-scale chemical 
boundary conditions (Buchholz et al. 2019). Since our WRFSFC model simulation used the 
MOZART chemical mechanism, we speciated output from CAM-chem so that it would be 
compatible with WRFSFC. Lateral boundary and initial conditions were processed using 
NCAR’s mozbc code. 
 Anthropogenic emissions were 
obtained from the Environmental 
Protection Agency (EPA)’s National 
Emissions Inventory (NEI 2017) and 
regridded to conform with our WRFSFC 
model domain. NEI regridding and 
processing were carried out using NCAR’s 
EPA_ANTHRO_EMIS tool. Like the 
CAM-chem processing, emissions from the 
2017 NEI were speciated to be compatible 
with WRFSFC’s MOZART chemical 
mechanism. The timestamps for the 2017 
NEI emissions also had to be shifted so that 
the days of the week for 2017 were aligned 
with the days of the week in 2020. NCAR’s 
EPA_ANTHRO_EMIS emission 
processing tool also had to be modified as 
there was a bug preventing emissions from 
being processed properly on grids that had 
a grid spacing of less than 4 km. Biogenic 
fluxes for chemical species like isoprene 
were obtained from MEGAN, which 
estimates the emission of gases and 

Figure 5. (a) Satellite estimated fire detections and the (b) SVM informed fire 
arrival time for fires located across the San Francisco Bay region on August 21 
2020.  

Figure 6. (a) A scatter showing the MLR model of the predicted O3 
concentrations from the four co-located AirU sensors for the 
training and test datasets vs. the reference DAQ O3 measurement 
(R2 = 0.72). (b) MLR model O3 predictions from the four co-located 
AirU sensors shown against the DAQ O3 measurement.  The graph 
includes the DAQ O3 measurement (black dotted line). 



aerosols from terrestrial ecosystems (https://bai.ess.uci.edu/megan). 
 Once the WRFSFC simulations were configured, model simulations were generated for 
August 14-26th 2020. The first simulation, which will be referred to as the baseline simulation, 
included all sources of potential atmospheric pollutants (anthropogenic sources, background, 
biogenic, and wildfires) with aerosol radiative feedbacks turned on. Additional WRFSFC 
simulations were also carried out that turned off aerosol radiative feedbacks, turned off fire 
emissions, and turned off anthropogenic emissions. We compared each of these sensitivity 
simulations with each other to quantify the respective roles of wildfires, anthropogenic sources, 
and smoke shading effects in elevating or suppressing O3 production during regional smoke 
events across Utah and surrounding areas.  These results are reviewed in the following section.  
 

Results:  
AirU Ozone Sensor Results 

Two general calibration models were used to calibrate O3 measurements for the AirU 
sensors. One method used a multiple linear regression (MLR) model while the second method 
used an artificial neural network (ANN) model. This model was calibrated based on O3 
measurements during the August 2020 wildfire smoke event and used inputs from four air 
quality sensors from the University of Utah’s network of low-cost air quality sensors (AirU) co-
located with a Utah Division of Air Quality (DAQ) reference monitor.  

The equation below shows the final MLR model used to calibrate the AirU sensors to 
measure O3: 

 
𝑂!,#$%& = 56.09 + 12.48 ∗ 𝑇',()$* − 7.16 ∗ 𝑂𝑋',()$* + 7.00 ∗ 𝑆𝑅',+(, 

 
where 𝑂!,#$%& is the predicted hourly O3 concentration in ppb, 𝑇',()$*is the hourly averaged z-
scored AirU temperature measurement in degrees Celsius, 𝑂𝑋',()$*is the hourly averaged z-
scored AirU OX signal measurement in millivolts, and 𝑆𝑅',+(, is the hourly averaged z-scored 
DAQ station solar radiation measurement in Langley’s per minute.  The AirU OX signal 
coefficient is negative in the final version of the MLR model, because the AirU OX signal 
variable is counteracting the overshoot obtained from the AirU temperature variable.  The linear 
regression with the AirU OX signal as the only variable has a positive coefficient for the AirU 
OX signal.  Figure 6a shows a scatter plot for the MLR model and indicates a good correlation 
with the UDAQ O3 concentration measurements. Figure 6b shows a time series of MLR 
predicted and UDAQ observed O3.  Overall, the MLR model captures the general shape and 

Table 1. Performance metrics for the MLR (top table) and ANN model (bottom table) with z-score normalization compared to 
performance metrics for the model results with no z-score normalization. 



magnitude of the UDAQ measured O3 concentration.  The MLR model performed well on the 
test dataset with a mean R2 value and mean Root Mean Square Error (RMSE) value across the 5-
folds of the cross-validation of 0.72 (+/- 0.13) and 8.7 ppb (+/ 0.8 ppb) respectively.  Table 1 
summarizes the MLR predictions from August 21-24, 2020.  Additionally, the MLR model was 
recomputed without applying the z-score normalization process to analyze the impact that z-
score normalization had on the O3 concentration model predictions.  Table 1 also shows the 
performance metrics computed for August 21-24, 2020 for both the MLR model with z-score 
normalization and with no z-score normalization.  Overall, the MLR model with z-score 
normalization performed better than the MLR model with no z-score normalization. Figure 7a 
shows a colormap of the MLR predicted O3 concentration for 2 pm, August 22, 2020, overlayed 
on a Salt Lake County Street map. Here, O3 concentrations were the highest near downtown Salt 
Lake City while O3 concentrations were lowest near the edges of the valley and further south. 

 

The second calibration model we used 
to calibrate the AirU sensors utilized an ANN 
model. For the ANN model, we used the Mean 
Squared Error (MSE) and the Mean Absolute 
Error (MAE) for the selected loss and accuracy 
metrics, respectively. For our ANN model, we 
used the Adaptive Moment Estimation as our 
optimizer algorithm to train our neural 
network. An Epoch of 50 was chosen as our 
number of iterations while we used a batch size 
of 32. Our dropout rate for the ANN model was 
20%. Finally, we used 25 neural nodes and 1 
hidden layer. Figure 8 shows a scatter plot for 
the results from our ANN model and O3 
concentrations from select UDAQ 
measurement sites. Overall, this scatter plot 
showed relatively good agreement between 
UDAQ and ANN-predicted O3 concentrations.  

Figure 7. Geo-spatial plot of (a) MLR (b) and ANN predicted O3 concentration for all 68 AirU sensors at 1400 LST on August 22, 
2020. 

Figure 8. Same as Figure 6, but results from the ANN 
model. The correlation coefficient between the ANN 
model predicted and UDAQ O3 concentrations was R2 =0 
.73. 



Figure 7 shows the results of the ANN model and the Hawthorne DAQ station O3 measurements.  
Like the MLR method, the ANN model also captures the general shape and magnitudes of the 
UDAQ reference O3 measurements.  The ANN model performed well on the test set and had a 
similar performance when compared with the MLR model. The ANN model had a mean R2 and 
mean RMSE value across the 5-folds of the cross-validation of 0.73 (+/- 0.09) and 8.6 ppb (+/-
0.9 ppb), respectively.  Table 1 shows the ANN model performance for August 21-24, 2020.  
Additionally, the ANN model was recomputed without applying the z-score normalization 
process to analyze the impact that z-score normalization had on the O3 concentration model 
predictions.  Table 1 lists the performance metrics for both the ANN model with and without z-
score normalization.  Overall, the ANN model using z-score normalization performed better than 
the ANN model with no z-score normalization. Figure 7a shows a colormap of the MLR 
predicted O3 concentration for 2 pm, August 22, 2020, overlayed on a Salt Lake County Street 
map. Like the MLR model, O3 concentrations were the highest near downtown SLC while O3 
concentrations were lowest near the edges of the valley and further south. This result is 
interesting in that previous work has shown that O3 concentrations tend to titrate towards the 
middle of the valley due to heavier traffic emissions, which can create a localized NOx-limited 
environment (Mitchell et al. 2018). Since wildfire smoke is heavy in VOCs, it's plausible that the 
center of the valley is not NOx limited during major smoke episodes. 

To determine the fidelity of the low-cost sensor, the predicted O3 concentrations from the 
AirU sensors were evaluated with an independent data set. The independent data set that we used 
here was from the TRAX mobile measurements (Mitchell et al. 2018). Comparison with TRAX 

train measurements provided an 
initial estimate of the calibration 
model performance. From this 
analysis, we sought to quantify 
relationships in O3 between the AirU 
calibrated sensor and the TRAX 
train. It is important to note that this 
comparison is limited since the 
TRAX train measurements are 
instantaneous while the calibration 
model concentrations were averaged 
by the hour. Furthermore, the AirU 
sensors are not co-located with the 
TRAX train path of travel.  Figures 9 
show the time series and scatter plot 
for the MLR model (Figure 9a & b) 
and ANN model calibrated O3 
concentrations (Figure 9b & c) for a 
single AirU sensor.  As seen in 

Figure 9, the MLR and ANN models for this AirU sensor captured the general shape and trend of 
O3 concentrations measured by the instrument on the TRAX.  The extent of correlation between 
the AirU ozone prediction and the TRAX train measurement was largely dependent on the 
sensor’s distance from the TRAX train. The MLR and ANN model ozone hourly predictions 
were reasonably correlated with the TRAX train measurements with an average R2 of 0.54 +/- 
0.22 and 0.50 +/- 0.24, respectively.  Given the limitations of this analysis described above, we 

Figure 9. MLR (a & b) and ANN model (b & d) hourly averaged O3 
predictions results for one AirU sensor (ID: 209148E036FB) compared to 
the instantaneous O3 measurements (30 second intervals) taken by TRAX 
train 01 when the train was located at a minimum distance from the AirU 
sensor. The minimum distance path of travel for TRAX train 01 is located 
1.05 km from AirU sensor. 



believe that the comparison to TRAX measurements does support the notion that the AirU 
sensors can reliably measure O3 when calibrated using an MLR method or ANN model. 

 
WRFSFC Simulation Results 

As described in the Objectives Section, a series of WRFSFC simulations were carried 
out to quantify the role of wildfire smoke in O3 production relative to other sources of 
atmospheric pollutants, e.g., anthropogenic emissions. We also sought to determine how smoke 
shading impacts O3 within wildfire smoke plumes by comparing the baseline WRFSFC 
simulation with a simulation that turned off aerosol radiative feedbacks.  

To reiterate from Methodology Section, the baseline WRFSFC simulation included all 
sources of atmospheric pollutants, e.g., wildfires, anthropogenic, and biogenic emissions. 
WRFSFC modeled concentrations of PM2.5, CO, and O3 were evaluated using measurements 
downloaded from the AirNow database (Figures 10 & 11). This analysis provided a regional 
assessment of how WRFSFC simulated smoke transport and chemistry. Regionally, fire activity 
was primarily confined to central and northern California during the middle of August, and was 
emitting a copious amount of smoke as seen in Figures 10 and 11. Between August 19-25th, a 
strong ridge was centered over the Intermountain West, which caused smoke to be transported 
from California towards SE Oregon and southern Idaho. Smoke continued to be advected to the 
east over Wyoming. According to air quality measurements across northern Utah, some of the 
smoke was advected southward along the Wasatch Front. Multiple sites across northern Utah 
measured PM2.5 concentrations that exceeded 40 μg m-3 (Figure 10a). By August 22nd, the 

Figure 10. WRFSFC baseline simulations for (a) PM2.5, (b) O3, and (c) CO and a MODIS visible satellite image all for August 21, 
2020. Colored circles represent observed concentrations for each respective pollutant (PM2.5, O3, and CO). 



regional smoke plume started to become diffuse due to decreased fire activity on August 21st 
(Figure 11a & d). Both observed and model-predicted PM2.5 concentrations indicated a general 
lowering of PM2.5 across much of the Western U.S.  

Overall, WRFSFC generally had a good agreement when modeled concentrations of 
PM2.5, O3, and CO when compared to air quality observations across the Western U.S. (Figures 
10 & 11). On August 21, much of the Central Valley and Bay Area of California was inundated 
with heavy smoke with PM2.5 observations exceeding 100 μg m-3 across many locations (Figure 
10a). The baseline simulation was able to reproduce the heavier PM2.5 concentrations located 
inland along with the steady decrease in PM2.5 towards the shoreline due to onshore sea breezes. 
The general orientation and the shape of the modeled smoke plume coming out of California 
aligned with observed concentrations of PM2.5 across southeastern Oregon, southern Idaho, and 
western Wyoming. Like PM2.5, O3 was moderately elevated across these regions with 
concentrations ranging between 65-80 ppb across northern California, western Nevada, and 
southern Idaho. Areas of O3 enhancements were generally collocated with areas of elevated 
PM2.5. While WRFSFC was able to predict areas of elevated concentrations of CO, these 
enhancements were often underpredicted (Figures 10 and 11c). However, it should be 
emphasized that CO observations are relatively limited compared to O3 and PM2.5, thus it is 
difficult to ascertain whether this is a real model bias or simply due to a sampling issue caused 
by the limited number of CO observations across the West. While the general transport of smoke 
was well captured by WRFSFC, the model underpredicted the southward transport of smoke 
along the Wasatch Front when looking at PM2.5 measurements on August 21st (Figure 10a). A 
preliminary meteorological analysis suggested that WRFSFC may have underestimated weak 

Figure 11. Like Figure 10, but for August 22, 2020. 



northerly winds by ~3 ms-1 during this time, which were likely necessary for transporting smoke 
from the Snake River Plain down into Utah.  

 By August 22nd, PM2.5 concentrations across much of the Western U.S. were lower, 
especially across the Intermountain West (Figure 11). Like the observations, the smoke plume in 
WRFSFC was much more diffuse relative to August 21st (Figure 10) with PM2.5 concentrations 
ranging from 5-35 μg m-3 across the Intermountain West. While the smoke was more diffuse 
across the Intermountain West, PM2.5 concentrations remained highly elevated across the Central 
Valley of California. O3 concentrations across the Intermountain West were also lower relative to 
the previous day.  

The next part of our analysis was centered around quantifying the impacts of different 
emission sources and smoke shading effects on O3 formation. As described in the Methods 
Section, 4 simulations were generated to analyze O3 sensitivities across the Intermountain West. 
The first comparison we look at was O3 for August 20th during the late afternoon at 2200 UTC, 
which is when O3 is usually at its peak concentration. From this analysis, it is evident that 
wildfires had a substantial impact on O3 photochemistry across much of the Western U.S. On 
August 20th, the smoke plume was draped across much of California and up through the Snake 
River Plain with O3 (Figure 12) and PM2.5 (Figure 13) concentrations being strongly elevated 
across this region. This is most evident when comparing the baseline WRFSFC run (Figure 12a) 
with the WRFSFC that turned off fire emissions (Figure 12d). Perhaps unsurprisingly, the 
average O3 concentration was highest in the simulation that included all sources of pollutants, 

Figure 12. WRFSFC simulated (color-filled contour) and observed O3 (color-filled circles) concentrations for August 20th, 2020 at 
2200 UTC. (a) The baseline WRFSFC simulation, (b) the WRFSFC simulation with aerosol radiative feedbacks turned off, (c) the 
WRFSFC simulation with fires emissions turned off, and (d) the WRFSFC simulation with anthropogenic emissions turned off. 



with aerosol radiative feedbacks turned off (Figure 12b). The most optically thick regions of the 
smoke plume observed O3 differences that differed by upwards of 30 ppb, indicating that smoke 
shading had a sizable impact on O3 production. Areas with the largest decrease in O3 mostly 
coincided with regions that had surface-based PM2.5 concentrations that exceeded 50-100 μg m-3. 
This result aligns with the observational-based analysis carried out by Buysse et al. (2019) who 
found that O3 production becomes limited when surface-based PM2.5 exceed 50 μg m-3.  

Another interesting aspect of these results is the impact of smoke shading on smoke 
transport when comparing the WRFSFC simulations with and without aerosol radiative 
feedbacks (Figure 13a and Figure 13b). While the smoke plume modeled by both WRFSFC 
simulations had similar shapes, the location of the highest PM2.5 concentrations varied 
significantly in the downwind section of the plume located over the Intermountain West. For the 
baseline WRFSFC simulation (Figure 13a), the highest PM2.5 concentrations, when excluding 
California, were located near the Oregon-Nevada border. For the WRFSFC simulation that did 
not include aerosol radiative feedbacks, the region with the most elevated PM2.5 concentrations 
was more elongated and covered NW Nevada, SE Oregon, and Idaho’s Snake River Plain. Here, 
we suspect that these differences are a consequence of the smoke shading effects impacting 
regional meteorology. As discussed in Kochanski et al. (2019), smoke shading effects from thick 
wildfire plumes can alter local meteorology by changing the atmosphere’s thermodynamic 
profile, which results in cooling at the surface and a decoupling of the planetary boundary layer 
(PBL) from the free troposphere. In turn, this can decrease near-surface winds and limit smoke 
transport. Previously, this effect was observed only in narrow mountain valleys that were 
adjacent to large wildfires. The analyses shown here suggest that smoke shading not only affects 
smoke transport at local scales, but also at the regional scale.  Temperature differences 

Figure 13. Same as Figure 12 but for PM2.5 



underneath the regional smoke plume in the Snake River Plain were lower by 1-3°C in the 
simulation that included aerosol radiative feedbacks. PBL heights across this same area were also 
~30% lower in the baseline WRFSFC simulation that included aerosol radiative feedbacks. It 
should be reiterated that fire growth WRFSFC simulations with fire emissions turned on were 
constrained by a satellite-driven fire growth algorithm and therefore smoke emissions and the 
fire-generated heat fluxes for each WRFSFC simulation were identical. In summary, shading 
effects from optically thick smoke plumes not only impact O3 photochemistry but can also 
impact how smoke is dispersed downwind of the fire due to changes in meteorology.  

While O3 and smoke impacts were underpredicted across the SLV on August 21, 2020, 
part of the plume was still advected into the northern part of Utah (Figure 10a). As a result, there 
was a noticeable difference in O3 across the Cache Valley and the extreme northern part of the 
Wasatch Front in August (Figure 14 & 15c). For the baseline WRFSFC simulation, O3 averaged 
between 65-73 ppb across this region, while observed O3 concentrations averaged around ~90 
ppb. However, O3 was ~5-10 ppb lower in the simulation that did not include fire emissions, 
suggesting that the remote wildfire smoke had an appreciable impact on O3 production on this 
day. With that said, it did appear that the baseline WRFSFC simulation was unable to capture the 
highest O3 concentrations on August 21st, which is likely related to the model not advecting 
enough smoke into the Cache Valley as indicated by the discrepancies between modeled and 
observed PM2.5 (Figure 10a). For the SLV, O3 was generally underpredicted, even during the 
non-fire days. The baseline WRFSFC simulation generally captured the variability in O3 between 
the afternoon and nighttime, however, simulated O3 concentrations were underpredicted during 
the afternoon by 5-20 ppb (Figure 15a). Comparisons were made between observed and 

Figure 14. Same as Figure 12, but for August 21, 2020 at 2200 UTC. 



WRFSFC simulated NO2 across the SLV. NO2 evaluations indicated that afternoon emissions of 
NO2 could be overpredicted by the 2017 NEI, especially along the I-15 corridor. This suggests 
that the SLV might still be in a strong NOx limited environment and that NOx might be titrating 
O3 too quickly, especially during the afternoon. Underpredicted daytime O3 concentrations 
appeared to be most pronounced in the SLV, while this underprediction was less pronounced in 
smaller cities like Logan (Figure 15b), Ogden (Figure 15c), and Boise (Figure 15d). Based on the 
WRFSFC sensitivity tests, anthropogenic emissions appeared to be the largest driver in O3 

Figure 15. Time series of modeled and observed O3 concentrations at (a) Salt Lake City, (b) Ogden, (c) Logan, and (d) Boise. 
Observed concentrations are in black, and the WRFSFC simulations for each sensitivity test are colored (red, orange, blue, 
green). 



variability for most days, while wildfire smoke appeared to be of secondary importance in 
enhancing O3 concentrations. With that said, smoke was generally underpredicted across most of 
Utah by WRFSFC, which would have limited modeled O3 sensitivity to wildfire smoke. Boise, 
Idaho, which is a mid-sized city in the middle of the wildfire smoke plume, observed large 
enhancements of O3 due to wildfire smoke. When smoke emissions were turned off within 
WRFSFC, O3 averaged between 55-60 ppb. However, when wildfire smoke emissions were 
turned on, O3 was elevated by an additional 10-15 ppb, which is loosely comparable to the 
difference seen when turning anthropogenic emissions on and off within the WRFSFC (see days 
before August 20-22 smoke event in Figure 15d). Based on this analysis, we suspect that if 
WRFSFC meteorology was able to capture the subtle tongue of smoke that drifted down along 
the Wasatch Front, we would have observed larger O3 enhancements in the model across 
northern Utah, like what was observed in Boise.  

 
Future Direction: 

Through this project, we developed the very first coupled fire-atmosphere model that can 
simultaneously resolve smoke plume photochemistry and smoke interactions with other sources 
of atmospheric pollutants, e.g., anthropogenic emissions. This project also led to the 
development of a new high-density observation network (AirU), which can make measurements 
of O3. As part of future work, a study that focuses on synthesizing O3 measurement from the 
AirU with high-resolution WRFSFC or WRF-Chem simulations would be valuable for 
elucidating the processes that govern O3 production across the SLV.  

 While simulated atmospheric pollutants within our WRFSFC simulations were in 
general agreement with regional 
observations, smoke concentrations during 
the August 2020 event were largely 
underestimated along the Wasatch Front. 
Through our analysis, northern Utah was 
on the fringes of a regional smoke plume 
that was primarily centered along the 
Snake River Plain, where weak northerly 
winds allowed some smoke to be advected 
southward along the Wasatch Front. These 
northerly winds were largely unpredicted 
by WRFSFC, therefore the model also 
unpredicted smoke concentrations across 
Wasatch Front. A much more impactful 
smoke event was observed on August 6th, 
2021, when Utah was in the center of a 
highly concentrated smoke plume. Many 
locations across Utah observed PM2.5 concentrations that exceeded 200 μg m-3, including the 
Wasatch Front. Since the smoke transport for the August 2021 case study was driven by a strong 
storm system, we suspect that WRF might have an easier time simulating this event relative to 
the August 2020 event (Figure 16). The August 2021 event would also be interesting to 
investigate since this event was associated with some of the highest PM2.5 concentrations ever 
observed in Utah for a summertime event. Interestingly, the highest PM2.5 concentrations 
observed during this event coincided with relatively low O3 concentrations (50-60 ppb). This 

Figure 16. MODIS visible satellite image of the August 6th, 2021 
smoke event for Utah.  



suggests that heavy smoke may have suppressed O3 production on this day due to aerosol 
radiative feedbacks, i.e., smoke shading effects. This case study would likely provide researchers 
with another opportunity to study how smoke shading impacts surface-based O3 in urban centers. 
Such an analysis would be insightful in the context of O3 forecasting.  

For this project, we utilized the 2017 NEI to develop our anthropogenic emissions 
inventory. For future work, we would propose using a new higher resolution emission inventory 
product that is currently being developed by National Oceanic and Atmospheric Administration 
(NOAA) Chemical Sciences Laboratory. This emission product has a detailed vehicle emissions 
model, which may provide better estimates for traffic emissions and may help improve O3 
simulations across the SLV.  
 
Data and Code Management:  

The WRFSFC model simulations generated for this analysis are hosted by the University 
of Utah’s Center for High Performance Computing. The WRFSFC simulations can be 
downloaded from a public-facing website, also hosted by CHPC: 
https://home.chpc.utah.edu/~u0703457/UDAQ_2020-2022/ 

WRFSFC output files are in a Network Common Data Form file format, and include 
gridded concentrations of atmospheric pollutants, along with meteorology. The files also contain 
information for geolocating the location of each grid cell. Each directory in the link provided 
above corresponds to the different WRFSFC sensitivity tests carried out as part of this 
experiment. For example, the baseline simulation, which includes all potential emission sources, 
along with aerosol radiative feedbacks can be found in the directory called 
‘WRFSFC_fire_on_aer_on’. The simulation with all emission sources, with radiative feedbacks 
turned off can be found in the directory named ‘WRFSFC_fire_on_aer_off’. The simulation 
where fire emissions were turned off can be found in ‘WRFSFC_no_fire’. Lastly, two 
simulations were generated where anthropogenic emissions were turned off, and aerosol 
radiative feedbacks turned on (WRFSFC_no_anthro_aer_on) and off 
(WRFSFC_no_anthro_aer_off). Each of these directories contains the namelist files used to 
create these simulations. Air quality observations downloaded from the AirNow data repository, 
and the scripts used to generate the analysis shown here can be found in the folder named 
“obs_and_scripts”. The postprocessing code used for our analyses was written in python and is 
in a Jupyter notebook format.  

The WRFSFC runtime code is publicly on Github: https://github.com/openwfm/WRF-
SFIRE. Code related to chemical emission and boundary condition processing outlined in the 
methodology section is publicly available at NCAR: https://www2.acom.ucar.edu/wrf-chem/wrf-
chem-tools-community 
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